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Abstract. Using low-energy electron diffraction (LEED), we show for two classes of systems,
which are representative for second- and first-order phase transitions in adsorbed layers, that
quantitative properties of phase transitions can be studied also by using integrated diffracted
intensities, turning the instrument to low resolution in two-dimensional reciprocal space,k‖. For
the continuous order–disorder phase transitions of several atomic adsorption systems, critical
properties have been studied by determination of the critical exponentsα (of the specific heat)
andη, the anomalous critical dimension, in the limitk‖ξ � 1. We performed systematic tests
of the conditions under which these exponents can be determined reliably from the diffracted
intensity of superstructure beams. In first-order phase transitions, scaling laws characterize specific
mechanisms driving the transitions. As an example of two-dimensional first-order phase transitions,
the transitions between a two-dimensional (2D) gas and the 2D solid of the first monolayer have
been studied for the noble gases Ar, Kr and Xe on a NaCl(100) surface in quasi-equilibrium with
the three-dimensional (3D) gas phase. Using linear temperature ramps, we show that the widths
of the hysteresis loops of these transitions as a function of the heating rate,r, scale with a power
law∝ rx with x between 0.4 and 0.5 depending on the system. The hysteresis loops for different
heating rates are similar. The island area of the condensed layer was found to grow initially with a
time dependence∝ t4. These results are in agreement with a model of growth-controlled hysteresis,
which predictsx = 0.5 and hysteresis loop similarity.

1. Introduction

Phase transitions are generally driven by fluctuations, which can be characterized by their
correlation lengths,ξ . For first-order transitions, the correlation length remains finite. Close
to the transition the coexisting phases can easily be overheated and undercooled, leading to
the well-known hysteresis phenomena. These depend partly on boundary conditions such as
heterogeneous or homogeneous nucleation, but even more strongly on the processes controlling
the dynamics of transformation from one phase into the other. Thus detailed studies of the
dynamics of first-order phase transitions contain information about the mechanism driving the
phase transition.

¶ Author to whom any correspondence should be addressed.
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For continuous phase transitions on the other hand, the correlation length in an ideal
system should diverge at the critical point. Therefore, their quantitative properties should only
depend on dimension and on the change of symmetry at the phase transition. This picture
has been corroborated both theoretically [1–3] and to some extent experimentally [4] also for
two-dimensional systems. Due to the much larger influence of fluctuations in 2D compared
to three-dimensional systems, large deviations from mean-field behaviour are expected and
have been observed in several different universality classes [1, 2]. In our own experience,
strongly chemisorbed atomic adsorbates at concentrations of sub-monolayers on metal surfaces
represent very good model systems for such studies [5, 6]. Their continuous order–disorder
phase transitions of commensurate phases give access to a variety of different universality
classes in 2D, which would mostly not be accessible via magnetic systems.

In this paper, we concentrate on examples of scaling laws for first- and second-order phase
transitions, which can be explored by use of integrated LEED intensities. For continuous
phase transitions, we performed tests on three systems with two different symmetries, namely
on (2× 2)-ordered H/Ni(111) and S/Ru(0001), and on (

√
3×√3)R30◦-ordered S/Ru(0001).

In particular, the system H/Ni(111) represents a crucial test system due to its small scattering
amplitude. The order–disorder phase transitions of the(2× 2) phases on both surfaces have
been shown to indeed be continuous and to belong to the four-state Potts universality class [7,8],
whereas the transition of the

√
3×√3R30◦ structure belongs to the three-state Potts class [7].

As examples of first-order phase transitions, we investigated in our experiments the scaling
of the hysteresis loops during condensation of the 2D solid phases of the noble gases Xe, Kr
and Ar on single-crystalline thin films of NaCl(100) in quasi-equilibrium with the 3D gas phase
at room temperature. Due to the van der Waals attraction between the noble-gas atoms, these
transitions are strongly first order, and can easily be measured. Since these gases condense
in different 2D structures (quasi-hexagonal (Xe) and quadratic (Ar, Kr)), our experiments
demonstrate that hysteresis loop scaling does not depend on the details of the solidification
process.

Most of the current experiments on two-dimensional systems trying to test hysteresis loop
scaling have been carried out on ferromagnetic layers [9–11]. Their objective has been to
check the validity of the scaling law [12,13]

A ∝ Hx
0�

y (1)

for the areaA, i.e. the energy loss per cycle, of the hysteresis loop induced by a sinusoidal
magnetic fieldH(t) = H0 sin�t .

However, the underlying physical mechanisms are far from being understood: although
power-law behaviour has been found in all studies [9–11], corroborating the general concept
expressed by equation (1), the effective exponentsx, y obtained from measurements on
magnetically quite similar systems vary by up to one order of magnitude (for a more detailed
discussion, see reference [11]).

In this situation, it seemed to be highly desirable to explore the validity of hysteresis loop
scaling in a completely different physical context: the condensation of the first layer of an
adsorbate on a surface with the heat of adsorption as the latent heat is a typical first-order
process for 2D systems (see [14]), which exhibits in many cases hysteresis due to overheating
and undercooling of the overlayer in an adsorption–desorption cycle [15]. In adsorption the
deviationµ of the chemical potential from its equilibrium value at the phase transition plays
the role of the magnetic field. Correspondingly,H0 must be replaced by the amplitude of the
varying chemical potential,µ0, in equation (1). Both the dynamics of magnetization reversal
in thin films and that of solidification of 2D adsorbed layers are governed by domain wall
dynamics, i.e. by domain nucleation and domain growth. The important difference between
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magnetic films and 2D adsorption layers is that in magnetic films the domain wall width is
typically of the order of 20 nm, whereas the boundaries of adsorbate islands, which play the
role of domain walls in adsorption dynamics, are sharp on the atomic scale. As a consequence,
nucleation barriers and hence the nucleation timeτn can be much smaller in adsorbed layers
than in magnetic films.

The studies of continuous phase transitions have a very different aim. Here, fluctuations
occur on all length scales, so an instrument which integrates effectively over all long-range
correlations will also be able to measure critical properties. In the limit where the integration
radius,kI , around a superstructure beam fulfils the conditionkI ξ � 1, these averages are
predicted to have the same critical properties as theenergy[16], i.e. they should diverge at
the critical point as a function of reduced temperaturet (t = (T − Tc)/Tc) with t1−α. (Tc is
the critical temperature.) There have been successful experiments which directly measured
the specific heat for noble-gas monolayers on graphite [17, 18]. They were able to identify
α for both the Ising [17] and the three-state Potts universality classes [18]. However, this
type of experiment is impossible for single crystals because of their small surface-to-volume
ratio. Therefore, the method just described is the only possibility. There have been some
attempts both in experiments [7, 19, 20] and in simulations [21] to prove the energy-like
behaviour in scattering experiments for order–disorder phase transitions in two-dimensional
layers. However, the results were all more or less inconclusive, since none of them showed pure
power-law behaviour; instead they showed rather large deviations from the expected exponents
of known universality classes. If the determination ofα worked reliably under well-defined
conditions, is would provide an easy experimental test of the nature of a given phase transition,
and an easy discrimination between various universality classes, since the differences inα

between different universality classes are the largest among the various critical exponents.
Systematic tests are necessary, therefore.

Using integrated LEED intensities, the critical exponentη, the anomalous critical
dimension, can also be determined, since in the limitk‖ξ → ∞ critical scattering has a
leading term [22]

χ(k‖, t) = Cξγ/νD± = k−(2−η)‖ (1 + · · ·) (2)

which is independent of temperature. If this limit can be reached experimentally,η can be
determined by integrating the intensity in a ring around a superstructure spot:

RI = 2π
∫ k2

k1

k dk I (k) ≈ A± π

1− η (k
η

2 − kη1) (3)

thereby avoiding any contribution from long-range order, which is centred at the Bragg position.
By systematic variation of the radii of integration around two-dimensional superstructure

Bragg positions, it turns out that the limitk‖ξ � 1 can be reached rather easily, so the critical
exponentsα andη can be determined reliably by integrating methods with LEED.

2. Experimental procedure

All of the experiments were carried out inµ-metal-shielded UHV chambers (base pressure
2×10−11 mbar) pumped by titanium sublimation and turbo-molecular pumps. The equipment
was supplemented by Auger and quadrupole mass spectrometers. LEED intensities were
measured using a conventional back-view LEED optics or a high-resolution LEED optics
equipped with a high-resolution optical detector. Peak intensities of LEED diffraction spots
were measured both with a Faraday cup and with the optical detector, while integrated
intensities were obtained from images taken with a cooled slow-scan CCD camera (512×512
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pixels with 14-bit resolution) that were stored on a personal computer. The variation of the
integration radii, background subtraction etc was carried out afterwards on the digitized images.
The temperature of the samples, which were cooled either by liquid N2 or by liquid He and
heated resistively, radiatively or by electron bombardment, was controlled by thermocouples
(Ni/NiCr or WRe 5%–WRe 25%) attached to a sample or in its close vicinity (NaCl). A
computerized feedback circuit with a nominal resolution of 0.001 K stabilized the sample
temperature to±0.01 K. The samples (10 mm in diameter, 1.5 mm thick) were cut by spark
erosion from single-crystal rods, etched, precision oriented to better than 0.2◦ and polished
with diamond pastes down to 0.25µm grain size. After extensive sputtering/annealing cycles
had been carried out for Ni (heating/cooling cycles in 5× 10−7 mbar oxygen for Ru), no
contaminants were detectable any longer with Auger spectroscopy long before these cycles
were completed. The NaCl(100) surfaces were preparedin situas epitaxial films three double
layers thick by evaporation of NaCl onto a Ge(100) substrate at a surface temperature of 200 K
and subsequently annealed to 550 K. This procedure produces single-crystalline NaCl layers
of high quality [23].

The temperature ramps for hysteresis measurements were always started far outside the
range of the phase transitions, so stable linear ramps with deviations close to the resolution of
the temperature control were obtained in all cases.

For Xe on NaCl(100), the superstructure diffraction spots of the quasi-hexagonal incom-
mensurate structure [24] were directly used to measure the hysteresis both with integrated
and with peak intensities. Only peak intensities of integer-order beams were evaluated for
the monolayers of Ar and Kr, which form ordered(1 × 1) and diffuse(2 × 1) structures,
respectively.

3. Results and discussion

3.1. First-order transitions: testing of dynamical scaling

The physical scenario that we want to test by means of our experiments on hysteresis loop
scaling has been outlined recently [25]. It makes the following assumption: hysteresis loop
scaling is studied close to thermodynamical equilibrium, so that it is controlled close to the
phase transition to condensation by the deviation of the chemical potential,µ, from its value
at infinitely slow approach to the phase transition,µ0. It further assumes heterogeneous
nucleation, which does not limit the speed of condensation, and a speed of island growth,v,
with v ∝ µ. With these assumptions, which we call growth-controlled hysteresis, it can easily
be shown [25,26] that for linear heating rates:

(a) the area of the hysteresis loop,A, scales with the heating rate,r, asrx with x = 0.5;
(b) during the initial stage of growth, the coverage of the condensate grows with time ast4;
(c) hysteresis loops are self-similar.

These results of the model can easily be tested in our experiments, in which we linearly
ramp the surface temperature up and down, keeping the ambient gas pressure constant. Since
the integrated intensity of a superstructure spot,I , in a diffraction experiment is proportional
to the coverage,2, statement (b) can be tested easily by measuring the initial time dependence
of I .

Typical data on the hysteresis during condensation of the quasi-hexagonal Xe layer
are shown in figure 1. The linear heating rate was varied by two orders of magnitude
between 0.001 and 0.1 K s−1. This rate was limited at small rates by the resolution of
the temperature measurement, at high rates by the onset of intermixing of second-layer
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Figure 1. Hysteresis loops of the 2D gas–
solid phase transition of Xe/NaCl(100) at a
Xe pressure of 10−7 mbar. The intensity of a
first-order superstructure spot was monitored
at the heating rates indicated.

condensation. Measurements were taken for gas pressures of 10−6 and 10−7 mbar. Not
surprisingly, the slopes during adsorption and desorption are not symmetrical due to the
exponential dependence of the desorption rate on the surface temperature. At higher rates
the form during condensation changes due to the above-mentioned onset of intermixing with
second-layer adsorption, leading also to a decrease of intensity with decreasing temperature.
Inside these limits the intensity at saturation did not depend on the heating rate.

For all three systems, we evaluated the dependence of the widths of the hysteresis loops
at half-maximum intensity on the heating rater. The results are shown as log–log plots in
figure 2. Power laws with similar effective exponents were obtained for all three systems,
although the shapes of the hysteresis loops differ significantly from each other. The effective
exponentsα obtained from these plots are close to 0.4 for Xe and Ar condensation (within
the statistical uncertainty of about 10%), whereas the average value for Kr ofα = 0.50
actually corresponds exactly to the value expected from the simple model of growth-controlled
hysteresis already mentioned. This perfect agreement might be accidental. The roughly 20%
smaller values obtained for Xe and Ar are sufficiently close toα = 0.5 to exclude a change of
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Figure 2. Log–log plots of the widths of
hysteresis loops as functions of the heating
rate r in the presence of a 3D gas pressure.
Xe/NaCl(100): p = 1 × 10−7 mbar (©),
p = 1 × 10−6 mbar (�). Full symbols:
Kr/NaCl(100) atp = 1× 10−7 mbar (three
different orders of diffraction). � and 4:
Ar/Nacl(100) atp = 1×10−7 mbar measured
for the (10) and (11) beams, respectively.



9938 H Pfnür et al

the basic condensation mechanism to nucleation-controlled growth, but these deviations might
nevertheless lead us to question the validity of our simple model.

Therefore, we also tested the time dependence of island growth during the initial stages
of growth for Xe. For this purpose, we plotted the integrated intensities of the Xe system as a
function of time during condensation again on a log–log scale (see figure 3). As mentioned,
the model predicts the integrated intensity to increase∝ r2t4. Since the temperature deviation
from the equilibrium condensation point is1T = rt , the integrated intensity should grow
∝(1T )4/r2. Therefore, the data in this figure are plotted once as a function of1T , and
a second time scaled byr−2. The integrated intensities follow closely thet4-dependence
predicted by our simple model, but deviate for coverages close to saturation, as expected.
As time zero we chose the condensation temperature at equilibrium, as estimated from the
centre of the hysteresis curves. This is the earliest possible time. It is fully consistent with
the assumptions of the model used, which assumes a small nucleation timeτn. The intensity
zero was taken as the bottom of the hysteresis curves without further adjustments. This result
therefore seems to nicely corroborate the model assumptions of growth-controlled hysteresis
and of a linear dependence of island growth on the deviation of the chemical potential from
the equilibrium value.
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Figure 3. Testing of the scaling with
time of integral intensities of a first-order
superstructure spot of Xe/NaCl(100).
The four data sets for the heating rates
indicated are also shown after rescaling
by r−2 (leftmost sets) together with at4-
line.

These results turned out to be insensitive to additional production of anion vacancies on
the NaCl substrate, caused by the measuring electron beam. They act as additional nucleation
centres. Though they reduce the maximum size of the islands, they obviously do not change
the growth modes, in agreement with the expectations from our model.

An explicit test of the similarity of the hysteresis curves was again carried out for
Xe/NaCl(100). The rescaled curves (after centring) are shown in figure 4 for one-order-of-
magnitude changes in the heating rate. While the evaporation data fit perfectly to a common
line, there is more scatter in the data during condensation, but no general trend for the small
deviations was found. Therefore, similarity also seems to be fulfilled by these data.

These results and their close agreement with theoretical expectations based on a simple
model shows that our approach allows access to a variety of scenarios of first-order processes
in two-dimensional systems and to two-dimensional interface motion. The good agreement
between our model and the experiments is in sharp contrast with the situation in magnetic films
where large discrepancies between experiment and theory have occurred. Possible reasons for
the more favourable situation in adsorption are the small widths of the island boundaries (of the



Two-dimensional first- and second-order phase transitions 9939

−6 −4 −2 0 2 4
Temperature (K)

−4

−2

0

2

4
In

te
ns

ity
 (

ar
b.

un
its

)

0.01
0.05
0.1

r (K/s)

Xe (10) 
hex

Figure 4. Hysteresis curves
for Xe rescaled by(1T )−α .

order of one lattice constant) and/or a low interface energy. Both features would lead to small
nucleation barriers and hence to short nucleation times. This is consistent with the observation
that growth-controlled hysteresis is the dominant mechanism in our experiments.

3.2. Continuous phase transitions: determination of the critical exponentsα andη

As mentioned in the introduction, we tested in these experiments the feasibility of reliably
determining the critical exponentsα andη from integrated intensities of superstructure beams.
More details of these investigations can be found in reference [27].

First, the thermal diffuse background that has to be subtracted from the integral intensities
was measured atk‖-positions exactly between the superstructure spots and averaged over a
diameter of 12% of|k10| in the temperature range±10% around the phase transitions. No
further adjustments of the resulting integral intensities were made.

Tc was determined from the point of inflection of the integrated curves [16], i.e. from the
peak of the temperature derivatives of the integrated intensities,I ′. (H/Ni(111)-p(2× 2):
Tc = 268.2 K, S/Ru(0001)-p(2× 2): Tc = 471.1 K, S/Ru(0001)-(

√
3 × √3)R30◦:

Tc = 416.0 K.) The accuracy ofTc of ±0.5 K turned out to be the main source of uncertainty
in the determination ofα. With Tc fixed as described, effective values ofα were obtained
from log–log plots ofI ′ for various integration radii,kI . As a typical example, the left panel
of figure 5 showsI ′ for the (2× 2) systems H/Ni(111) and S/Ru(0001) belowTc. BelowTc,
a power-law behaviour is seen over slightly less than one order of magnitude int between
0.01 and 0.1 for H/Ni(111), almost independently of the integration radius, which was varied
between 0.6% and 4% of the Brillouin zone (BZ) diameter. Whereas the lower limit of the
integration radius is due to the finite resolution of the LEED instrument, the variation ofI ′ (as
a function ofkI ) for integration radii larger than 4% was found to be small. With the much
higher signal in the system S/Ru(0001)-p(2× 2), no deviations from power-law behaviour
at larget are seen and practically identical values forα were obtained (α = 0.68± 0.07
H/Ni(111) and 0.66± 0.07 for S/Ru(0001)). They coincide almost perfectly with those of the
expected four-state Potts universality class. The levelling off at|t | < 0.01 is due to the finite
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Figure 5. Log–log plots of integrated intensities of superstructure beams as functions of reduced
temperature for (2× 2)-2H/Ni(111) and p(2× 2) S/Ru(0001) belowTc (left), and for p(2× 2)
S/Ru(0001) aboveTc, for various radii of integration. In the left panel, these radii vary between
0.6% (lowest curve) and 4% (in units of|k10|) for H/Ni(111). For S/Ru(0001), the curves for radii
of kI = 2.7 and 4% (short dashes) are shown. In the right panel the variation is between 1.35%
and 8%.

size of the terraces on our surfaces. The deviations from power-law behaviour close tot = 0.1
for H/Ni(111) might be an experimental effect due to incorrect background subtraction, since
these deviations were not seen for S/Ru(0001). A comparison of previously measured data for
the correlation lengths at these phase transitions [7,8] shows that the crossover to the finite-size
regime happens roughly when the correlation length reaches the average terrace size.

Similar behaviour in the same range oft is observed forI ′ on the (
√

3 × √3)R30◦-
S/Ru(0001), but with an effective exponentα of 0.40± 0.05. This value is slightly larger
than expected for the three-state Potts universality class (α = 1/3), but any attempt to add
additional terms to the simple power law only made the value ofα more dependent on the
integration radius, and did not systematically shift it closer to 1/3. The most likely explanation
for this discrepancy is the small influences of the crossover to the behaviour at smallk‖ξ with an
exponent (1−2β), which is 0.78 and 0.83, respectively, for three- and four-state Potts classes.
Sinceα is much closer to 1− 2β for the four-state Potts systems than for the three-state Potts
system, this effect is much more severe in the latter case, in agreement with our observation,
and is a likely explanation for our findings.

AboveTc, apart from the finite-size-limited region int , no power-law behaviour can be
observed. As expected from qualitative calculations using an expansion in 4− ε dimensions
[27], the accessible range of reduced temperature is completely dominated by crossover
betweent−α-behaviour andt−γ−1-behaviour. This slope should be reached at larget , i.e. for
very broad spots, wherekI ξ � 1 is no longer valid. Indeed, the limiting slope in the lowest
curve of figure 5 (right panel) at larget corresponds exactly to this value. Putting the values
for α obtained belowTc into this figure, a widening of thet-range can be recognized, as a
function of increasingkI , over which the slopeα fits the curves. This range, however, is too
small in all cases forα to be determined directly. On the other hand, using the known values
of α and the correlation lengths determined from spot profile analysis as a function oft [7,8],
we can estimate the limiting values ofk‖ξ for the ‘correct’ slope ofα to be between 1 and 2
for the (2× 2) systems and around 3 for the

√
3 system. From the successful determination of

α in the samet-range belowTc, and with similarkI , we conclude that the limit of largek‖ξ is
reached even more easily belowTc, although the correlation lengths for identical|t | belowTc
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are considerably smaller than aboveTc [28].
From these results, we have good evidence thatα can be determined reliably from

integrated intensities, at least belowTc. Although corrections are non-universal and may
play a role in all systems of finite size [3], they have been shown to have little influence in the
determination of the exponentsβ, γ andν [7, 8, 19] for the systems investigated here. Our
results suggest that on these rather imperfect surfaces the most important modification of the
effective values obtained forα seems to be crossover to(1−2β) belowTc and to(1+γ ) above
Tc. BelowTc, α is only slightly influenced but not dominated by crossover to(1− 2β). This
effect should be strongly reduced closer toTc, for which, however, surfaces with much larger
terraces are needed.

In order to test equation (3), we integrated ring intensities around superstructure spots
excluding the centre. Thus, the intensity due to long-range order did not contribute. A back-
ground subtraction as described above was carried out before analysing the data, which, as
mentioned, contained no adjustable parameters. The circle at 4% of|k10|was arbitrarily chosen
as zero. Figure 6 shows our results for (

√
3×√3)R30◦-ordered S/Ru(0001) and for (2× 2)-

ordered H/Ni(111). Both data sets show the same trends: there is significant temperature
dependence belowk‖ = 3%, but the integrated ring intensities abovek‖ = 4% show little,
but no systematic dependence on temperature, as predicted by equation (3). This is especially
remarkable for the H/Ni(111) data, which go through the phase transition. The same behaviour,
even up to an integration radius of 14%, was found for p(2× 2)-S/Ru(0001). Fits to the data
according to equation (3) were carried out for integration radii between 3 and 14% of|k10| for
(
√

3× √3)R30◦-S/Ru(0001). They yield an average value forη = 0.30± 0.08. The same
procedure applied to H/Ni(111) givesη = 0.27± 0.10. The error limits contain variations of
η from different data sets and uncertainties in background subtraction, which are more severe
for the H/Ni(111) system due to the small absolute intensities in this system.
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Figure 6. Integrated ring intensities,RI , as functions of the integration radius1k‖, measured in
units of the diameter of the Brillouin zone, BZ (≡|k10|), at the temperatures indicated. Note that for
H/Ni(111)Tc was at 268.2 K, i.e. data were taken both below and aboveTc. The lower boundary
in the integration was arbitrarily set to1k‖ = 0.04k10.

Both values agree within error bars very well with those expected from theory (η = 0.27
for three-state Potts systems and 0.25 for four-state Potts systems), although obtained over a
comparatively small range ink‖. This range, however, cannot be extended both for physical
reasons (the boundary of the Brillouin zone) and for reasons of too-small intensities.
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These experiments demonstrate that at continuous order–disorder phase transitions in two-
dimensional lattice gas systems belonging to the three- and four-state Potts universality classes,
the limit of largek‖ξ is reached aboveTc already for values ofk‖ξ between 2 and 3, whereas
belowTc these values are even smaller. As a consequence, the successful determination of the
critical exponent of the specific heat,α, is possible belowTc even rather far away from the
critical temperature, but (small) crossover effects to behaviour∝(2β − 1) are detectable.

The feasibility of reaching the limit of largek‖ξ rather easily in experiment has the
interesting consequence that we can demonstrate that critical scattering in this limit is
dominated by a term which is independent of temperature. By explicit determination ofη

we also show that thek‖-dependence is fully compatible with that given by equation (2).
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